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Problem Set 1

This first problem set is designed to help you gain a familiarity with set theory and basic proof 
techniques. By the time you're done, you should have a much stronger sense of how to rigorously 
establish mathematical results.

Start this problem set early.  It contains eleven problems (one checkpoint question, eight graded 
problems, one survey question, and one optional extra credit problem), several of which require a 
fair amount of thought.  I would suggest reading through this problem set as soon as you get it to  
get a sense of what it covers.

Please read Handout #02 (Problem Set Policies) and Handout #03 (CS103 and the Stanford 
Honor Code) before starting this problem set.  These handouts contains our collaboration pol-
icy, submission instructions, and general advice on how to approach these problems.

As always, please feel free to drop by office hours or send us emails if you have any questions. 
We'd be happy to help out.

This problem set has 150 possible points.  It is weighted at 6% of your total grade.  The earlier 
questions serve as a warm-up for the later problems, so the difficulty of the problems increases 
over the course of this problem set.

Good luck, and have fun!

Checkpoint Questions Due Monday, September 30 at 2:15 PM
Remaining Questions Due Friday, October 4 at 2:15 PM
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Write your solutions to the following checkpoint problems and submit them by Monday, Septem-
ber 30 at the start of class. These problems will be graded on a 0/12/25 scale, where

• Solutions that reasonably attempt to solve all of the problems, even if the attempts are in-
correct, will receive 25 points.

• Solutions that reasonably attempt some but not all of the problems will receive 12 points.

• Solutions that do not reasonably attempt any of the problems will receive 0 points.

Essentially, if you've made a good, honest effort to solve all of the problems, you should receive 
25 points even if your solutions contain errors.

Please make the best effort you can when solving these problems. We want the feedback we 
give you on your solutions to be as useful as possible, so the more time and effort you put into 
them, the better we'll be able to comment on your proof style and technique.

We will try to get these problems returned to you with feedback on your proof style this Wednes-
day, October 2. Submission instructions are included in the “Problem Set Policies” handout.

Checkpoint Problem: Multiples of Three (25 Points)
An integer is a multiple of three iff it can be written as 3k for some integer k. An integer is con-
gruent to one modulo three iff it can be written as 3k + 1 for some integer k, and an integer is con-
gruent to two modulo three iff it can be written as 3k + 2 for some integer k. For each integer n, 
exactly one of the following is true (you don't need to prove this):

• n is a multiple of three.

• n is congruent to one modulo three.

• n is congruent to two modulo three.

Suppose that we want to prove this result:

For every integer n, n is a multiple of three iff n2 is a multiple of three.

To do this, we will prove the following two statements:

For any integer n, if n a multiple of three, then n2 is a multiple of three.

For any integer n, if n2 is a multiple of three , then n is a multiple of three.

i. Prove the first of these statements with a direct proof.

ii. Prove the second of these statements using the contrapositive. Make sure that you state the 
contrapositive of the statement explicitly before you attempt to prove it.

iii. Prove, by contradiction, that √3 is irrational. Make sure that you explicitly state what as-
sumption you are making before you derive a contradiction from it. Recall from lecture 
that a rational number is one that can be written as p / q for integers p and q where q ≠ 0 
and p and q have no common divisor other than ±1.
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The remainder of these problems should be completed and
returned by Friday, October 4 at the start of class.

Problem One: Set Theory Warmup (4 points)
This question is designed to help you get used to the notation and mathematical conventions sur-
rounding sets.  We strongly suggest working through this problem and checking your answers be-
fore starting Problem Two.

Consider the following sets:

    W = { 1, 2, 3, 4 }

    X  = { 2, 2, 2, 1, 4, 3 }

    Y  = { 1, {2}, {{3, 4}} }

    Z  = { 1, 3 }

Answer each of the following questions  and briefly justify your answers.  No formal proofs are 
necessary.

i. Which pairs of the above sets, if any, are equal to one another?

ii. Is Z  ∈ W?  Is Z  ⊆ W?

iii. Is Z  (∈ ℘ W)?  Is Z  (⊆ ℘ W)?

iv. What is W ∩ Y?  How about W  ∪ Y?  How about W Δ Y?

v. What is |X|?

Problem Two: Properties of Sets (28 points)
Below are four claims about sets.  For each statement, if it is always true, prove it.  If it is always 
false, prove that it is always false. If it is sometimes true and sometimes false, provide an example 
for which it is true and an example for which it is false and briefly explain why your examples 
have these properties.

When writing your proofs for this problem, you should try as much as possible to work directly 
with the definitions of sets and set operations and not use results that we have not yet proven. For 
example, to show that one set is a subset of another, prove that all elements of the first set belong 
to the second set.  Similarly, to prove that two sets are equal, you should show that any element of 
the first set must also be an element of the second set and vice versa (recall that this is equivalent 
to showing that the two sets are subsets of one another.)  Handout #04 (Set Theory Definitions) 
contains formal definitions of the terms we've used so far.

The point of this question is to help you learn how to manipulate definitions in proofs, so please 
try to justify each step in your proofs.

i. If A  ∈ B and B  ∈ C, then A  ∈ C.

ii. If (℘ A) = (℘ B), then A = B.

iii. (A – B)  ∪ B = A.

iv. A ∩ (B – A) ≠ Ø
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Problem Three: Venn Diagrams (4 Points)
In our first lecture, we saw the following picture, which represents a Venn diagram for four sets:

A

B C

D

This picture is probably not what you would have initially expected.  It might seem more reason-
able to draw the Venn diagram this way:

A B

C D

However, the way that these circles overlap is not sufficient to show all possible ways that four 
different sets can overlap. Give concrete examples of four sets A, B, C, and D such that there is no 
way to accurately represent the overlap of those four sets with the second Venn diagram, and 
briefly explain why your sets have this property.

Problem Four: Two Is Irrational? (8 points)
In lecture, we proved that √2 is irrational, and in the checkpoint problem you proved that √3 is ir-
rational.  Below is a purported proof that √4 is irrational:

Theorem: √4 is irrational.

Proof: By contradiction; assume that √4 is rational.  Then there must exist integers p 
and q such that q ≠ 0, p / q = √4 , and p and q have no common factors other 
than 1 and -1.

Since p / q = √4 , we have p2 / q2 = 4, so p2 = 4q2.  Since q2 is an integer, we 
see p2 is a multiple of four, and therefore p is a multiple of four. Thus p = 4n 
for some integer n.

Since 4q2 = p2 and p = 4n, we have 4q2 = (4n)2 = 16n2, so q2 = 4n2. Since n2 is 
an integer, we see q2 is a multiple of four, so q is a multiple of four as well. 
But since both p and q are multiples of four, we get that p and q share a com-
mon divisor other than 1 and -1, contradicting our initial assumption. We have 
reached a contradiction, so our assumption must have been incorrect. Thus √4
is irrational. ■

This proof has to be wrong, because √4 = 2 = 2/1, which is indeed rational!

What error does this proof make that lets it conclude √4 is irrational?  Why doesn't this error oc-
cur in the similar proofs that √2 and √3  are irrational?
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Problem Five: Pythagorean Triples (12 points)
A Pythagorean triple is a triple (a, b, c) of positive natural numbers such that a2 + b2 = c2.  For ex-
ample, (3, 4, 5) is a Pythagorean triple, since 32 + 42 = 9 + 16 = 25 = 52.  Similarly, (5, 12, 13) is a 
Pythagorean triple, as is (8, 15, 17).

Prove that if (a, b, c) is a Pythagorean triple, then (a + 1, b + 1, c + 1) is not a Pythagorean triple.

Problem Six: Modular Arithmetic (24 points)
Many programming languages support a modulus operator (in some languages, using the % opera-
tor)  that gives the remainder when one number is divided by another. For example, 5  % 3 = 2, 
since three divides five with remainder two.  Similarly, 17 % 6 = 5.

Many different numbers yield the same remainder when divided by some number.  For example, 
the numbers 2, 5, 8, 11, 14, and 17, all leave a remainder of two when divided by three, while the  
numbers 1, 12, 23, 34, and 45 all leave a remainder of one when divided by eleven.  To formalize 
this relationship between numbers, we'll introduce a relation ≡k that, intuitively, indicates that two 
numbers leave the same remainder when divided by k.  For example, we'd say that 1 ≡11 12 and 
that 8 ≡3 11.

To be more rigorous, we'll give a formal definition of ≡k. For any integer k, we'll define a ≡k b as 
follows:

a ≡k b iff there exists an integer q such that a – b = kq

For example, 7 ≡3 4, because 7 – 4 = 3 = 3·1, and 13 ≡4 5 because 13 – 5 = 8 = 4·2.  If x ≡k y, we 
say that x is congruent to y modulo k, hence the terminology in the checkpoint problem.  In this 
problem, you will prove several properties of modular congruence.

i. Prove that for any integer x and any integer k that x ≡k x.

ii. Prove that for any integers x and y and any integer k that if x ≡k y, then y ≡k x.

iii. Prove that for any integers x, y, and z and any integer k that if x ≡k y and y ≡k z, then x ≡k z.

The three properties you have just proven show that modular congruence is an equivalence rela-
tion. Equivalence relations are important throughout mathematics, and we'll see more examples of 
them later in the quarter.

Modular congruence plays well with arithmetic:

iv. Prove that for any integers w, x, y, z, and k that if x ≡k w and y ≡k z, then x + y ≡k w + z.

v. Prove that for any integers w, x, y, z, and k that if x ≡k w and y ≡k z, then xy ≡k wz.

These last two results are important for how computers do arithmetic. Computers can't actually 
store arbitrarily large integers, because computers are inherently finite.  Instead, when storing inte-
gers, computers typically represent them modulo some large power of two, such as 232 or 264.  For 
example, in C or C++, the unsigned int type often represents an integer modulo 232, and the 
unsigned long type often represents an integer modulo 264. The result that you have just proven 
shows that if the computer adds or multiplies numbers, the result will at least be correct modulo 
the large power of two, even if the actual result is too large to hold in memory.
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Problem Seven: Subverting XOR Encryption (16 Points)
In lecture, we saw how to use the XOR operator (denoted ) to encrypt a message.  ⊕ Let's suppose 
two parties (we'll call them Alice and Bob) want to communicate a secret message consisting of n 
bits.  In advance, they agree on a secret key K (a random string of n bits).  If Alice then wants to 
send Bob a secret n-bit message M, she and Bob can do the following:

• Alice computes M  ⊕ K and sends it to Bob.

• Bob receives M  ⊕ K and computes (M  ⊕ K)  ⊕ K = M to recover the original message M.

As long as the key K is chosen uniformly at random and known only to Alice and Bob, the mes-
sage can't be recovered by an eavesdropper, even if the eavesdropper can see the value of M  ⊕ K. 
However, that doesn't mean this system is perfectly secure.  Suppose Alice wants to send a mes-
sage to Bob using XOR encryption. Alice and Bob have already chosen their secret key K, which 
you don't know. However, you do know the message Alice will send will be one of the two mes-
sages M  and ₁ M₂. Your goal is to trick Bob into receiving the wrong message from Alice.

When Alice encrypts the message and sends it to Bob, you intercept it before it reaches Bob.  You 
can then tamper with the message however you'd like before sending it on to Bob. If Alice really 
sent message M , then you want Bob to receive message ₁ M , and if Alice really sent message ₂ M ,₂  
you want Bob to receive message M .₁

Suppose you know M  ⊕ K (the encrypted version of the message M that Alice sent to Bob), M ,₁  
and M , ₂ but not K. Describe a procedure you can use to produce M'  ⊕ K from these values, where 
M' is the message Alice didn't send (for example, if M = M , then ₁ M' = M )₂ . That way, when Bob 
decrypts the message, he'll get back M' instead of M.  Prove that your procedure works correctly.

Problem Eight: Tiling a Chessboard (24 Points)
Suppose that you have a standard 8 × 8 chessboard with two opposite corners removed:

In the course notes (page 62), there's a proof that it's impossible to tile this chessboard using 2 × 1 
dominoes. This question considers what happens if you try to tile the chessboard using right tri-
ominoes, L-shaped tiles that look like this:

i. Prove that it is impossible to tile an 8 × 8 chessboard missing two opposite corners with 
right triominoes.

ii. For n ≥ 3, is it ever possible to tile an n × n chessboard missing two opposite corners with 
right triominoes? If so, find a number n ≥ 3 such that it's possible and show how to tile that 
chessboard with right triominoes. If not, prove that for every n ≥ 3, it's impossible to tile 
an n × n chessboard missing two opposite corners with right triominoes.
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Problem Nine: Course Feedback (5 Points)
We want this course to be as good as it can be, and we'd appreciate your feedback on how we're  
doing.  For a free five points, please answer the following questions.  We'll give full credit for any 
answers to these five questions.

i. How hard did you find this problem set?  How long did it take you to finish?  Does that 
seem unreasonably difficult or time-consuming for a five-unit class?

ii. Did you attend any of the recitation sections or look over the discussion problems?  If so, 
did you find them useful?

iii. Did you read the online course notes?  If so, did you find them useful?

iv. How is the pace of this course so far?  Too slow?  Too fast?  Just right?

v. Is there anything in particular we could do better?  Is there anything in particular that you 
think we're doing well?

Extra Credit Problem: Symmetric Latin Squares (5 Points Extra Credit)
A Latin square is an n × n grid filled with the numbers 1, 2, 3, …, n such that every number ap-
pears in every row and every column exactly once.  For example, the following are Latin squares:

1 2 3

3 1 2

2 3 1

4 2 1

1 3 2

3 1 4

2 4 3

3

4

2

1

1 3 5

2 4 1

3 5 2

4 1 3

2

3

4

5

4

5

1

2

5 2 4 1 3

A symmetric Latin square is a Latin square that is symmetric across the main diagonal.  That is, 
the elements at positions (i, j) and (j, i) are always the same.  For example:

1 2 3

2 3 1

3 1 2

4 2 3

2 3 1

3 1 4

1 4 2

1

4

2

3

1 2 3

2 4 5

3 5 2

4 3 1

4

3

1

5

5

1

4

2

5 1 4 2 3

Prove that in any n × n symmetric Latin square where n is odd, every number 1, 2, 3, …, n must 
appear exactly once on the diagonal from the upper-left corner to the lower-right corner.


